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ABSTRACT
Accuracy of convective flux approximation is important for numerical computation of incompressible flow on unstructured grids. The Quasi-QUICK
scheme by Davidson is proposed to improve the accuracy of convective flux approximation. The numerical performances of the Q-QUICK scheme
on unstructured grids are explored, including numerical accuracy, convergence stability, CPU time consumption and solution sensitivity to high grid
deformation. Several test cases such as 90◦ and 30◦ 2D lid-driven cavity flows, diverging channel and 3D lid-driven cavity flow are considered. The
results show that the Q-QUICK scheme performs well in terms of numerical accuracy, convergence stability or adaptability to high grid deformation
if compared with other schemes. Moreover, the convergence speed of momentum equation and CPU time consumptions are also compared for each
type of grid and scheme.

RÉSUMÉ
La précision de l’approximation du flux convectif est importante pour le calcul numérique des écoulements incompressibles sur les grilles non
structurées. Le schéma Quasi-QUICK de Davidson est proposé pour améliorer la précision de l’approximation du flux convectif. Les performances
numériques du schéma Q-QUICK sur les grilles non structurées sont étudiées, y compris la précision numérique, la stabilité de convergence,
la consommation de temps CPU et la sensibilité de la solution aux fortes déformations de grille. Plusieurs cas tests sont considérés comme les
écoulements 2D en cavité pilotés par couvercle à 90◦ et 30◦, un canal divergent et l’écoulement 3D en cavité piloté par couvercle. Les résultats
montrent que le schéma Q-QUICK a de bonnes performances en termes de précision numérique, de stabilité de la convergence ou d’adaptabilité à
une forte déformation de grille si on le compare aux autres schémas. En outre, la rapidité de convergence de l’équation des quantités de mouvement
et les consommations de temps CPU sont également comparées pour chaque type de grille et de schéma.
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1 Introduction

In numerical simulation of incompressible flow, unstructured
grids can well fit to complex physical boundaries for both 2D
or 3D flows. Thus a computation based on unstructured grids
becomes more and more prevalent. However, many numerical
schemes on structured grids can not be directly applied to unstruc-
tured grids. It is imperative to study high-precision schemes that
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fit to the computation on unstructured grids, in particular for
coarse grids.

In the past decades, a number of difference schemes to
calculate convective flux were developed for incompressible
flow simulation. They include the Upwind Difference Scheme
(UDS), Central Differencing Scheme (CDS), Hybrid Differenc-
ing Scheme (HDS), Quadratic Upstream Interpolation for Con-
vective Kinematics scheme (QUICK) (Leonard 1979), Quadratic
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Upstream Extended and Quadratic Upstream Extended Revised
Difference Scheme (QUDSE, QUDSER as modified by Pollard
and Siu 1982), the Locally Exact Difference Scheme (LEDS)
(Spalding 1972) and the Power Difference Scheme (PDS)
(Pantankar 1980). The unconditionally-convergent schemes
UDS/HDS/LEDS/PDS may become highly inaccurate on coarse
grids. Thus, they require considerable grid refinement to produce
acceptable results, rendering them costly (Patel and Markatos
1986). Moreover, they implicitly introduce the numerical diffu-
sion term and distort the solution. In terms of accuracy and com-
putational efficiency, it appears that QUICK/QUDSE/QUDSER
may offer the best compromise (e.g. Patel and Markatos 1986).
For uniform grids, they can have high-order accuracy for incom-
pressible convective flux approximation and are widely applied
(e.g. Berour et al. 2007, Carvalho et al. 2008, Wei et al. 2002, Sta-
mou et al. 2008). However, QUICK/QUDSE/ QUDSER need the
nodes of two upstream cells. Then it is not so easy to apply these
high-order schemes to unstructured grids directly, especially in
three-dimensional (3D) problems. Moreover, searching for the
exact locations of the far-upstream nodes on unstructured grids
increases computational complexity, and consumes more mem-
ory and CPU time. Furthermore, for multi-dimensional flows
involving three or more sets of equations, the computation capac-
ity of current computers still proves to be the limiting factor
in the use of very fine grids. Therefore, high-order interpola-
tion schemes of sufficient accuracy are required to permit the
performance of complex computations on relatively coarse grids.

Davidson (1996) introduced Quasi-QUICK (Q-QUICK) in
which the far-upstream node is constructed by intersection from
the line of two adjacent central points and its corresponding
interface. Herein the numerical performances of the Q-QUICK
scheme are explored, and several test cases are demonstrated to
study its numerical accuracy, convergence stability, CPU time
consumption and solution sensitivity to high grid deformation.

2 Governing equations

The governing non-dimensional equations of steady, incompress-
ible flow are

∇ · �u = 0 (1)

�u · ∇�u = −∇p+ ∇ ·
(

1

R
∇�u

)
(2)

where �u = velocity, p = pressure, and R = Reynolds number.
These equations reveal similarity in their structure. If a typical
representative variable is denoted by ϕ, the general form of these
equations is

∇ · (�uϕ) = ∇ · (�ϕ∇ϕ)+ Sϕ (3)

where Sϕ = source term including pressure for the momentum
equation, and �ϕ = diffusivity. The convection and diffusion
terms are embedded in divergence form.

3 Numerical discretization

3.1 Convection fluxes

The Finite-Volume Method (FVM) is used to discretize the gov-
erning equations on unstructured grids. By first integrating over
a control volume and then using Gauss’s divergence theorem,
Eq. (3) can be written as

∑
f

F c
f =

∑
f

F d
f +

∫
�

Sϕd� (4)

where F c
f = (A�u · �n)fϕf , F d

f = (A�ϕ∇ϕ · �n)f = convection
and diffusion fluxes through one internal face f respectively, A=
area, �n = outward-pointing face area vector, � = volume of the
control cell.

On the non-uniform structured grid shown in Fig. 1, the
QUICK scheme at the east cell-face (between P and E) can be
written as

ϕe = B1

B
ϕP − B2

B
ϕE + B3

B
ϕW (u ≥ 0);

ϕe = B1

B
ϕP − B2

B
ϕE + B3

B
ϕEE (u < 0)

(5)

whereB1 = δ2δ3(δ2−δ3),B2 = δ1δ3(δ1+δ3),B3 = δ1δ2(δ1+δ2),
B = B1 − B2 + B3, δ3 = −(ψ1 + δ1)(u ≥ 0) or δ3 = ψ2 +
δ2(u < 0), e = midpoint of line PE, δ1, δ2 = distances between
points P and e, e and E, respectively, ψ1, ψ2 = distances between
points W and P, E and EE, respectively. This is a third-order
approximation of the convection term. However, this high-order
scheme is not easily applicable to unstructured grids. Searching
for the exact locations of these far-upstream nodes EE or WW on
an unstructured grid also increases the geometrical complexity
and consumes excessive memory and CPU time.

Davidson (1996) introduced the modified Q-QUCIK scheme.
Considering Fig. 2, the far-upstream node U is constructed by
the intersection of line PG and its corresponding interface f,
with J = centre of the interface f. An appropriate way involves
reconstruction schemes (Davidson 1996), namely to compute the
gradient at node P and use a Taylor expansion to obtain the value at
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EEe 
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Figure 1 QUICK scheme on non-uniform grid
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Figure 2 Far-upstream node reconstruction for Q-QUICK convection
scheme
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node U as

ϕU = ϕP + �rPU · (∇ϕ)P + 1

2
(�rPU)

2 : (∇∇ϕ)P + · · ·

+ 1

m! (�rPU)
m :::︸︷︷︸

m

(∇∇ · · · ∇︸ ︷︷ ︸
m

ϕ)P + · · · (6)

where �rPU = distance vector from point P to point U. Herein,
a second-order approximation is considered. Thus the first two
terms on the right hand side of Eq. (6) are retained. Then, the value
at interface f is estimated, by assuming that the flow direction is
from left to right. The face value is interpolated by QUICK as for
structured grids, resulting for the normal face value ϕf in

ϕf = ϕP + (ϕf)H (7)

where (ϕf)H = f1�rPU · (∇ϕ)P + f2(ϕG − ϕP)+ �rIJ · (∇ϕ)I, f1 =
−(z − y)(y − x)x−1z−1, f2 = y(y − x)z−1(z − x)−1. Then, the
convection flux is written as

F c
f = (A�u · �n)fϕP + (A�u · �n)f(ϕf)H (8)

During calculation, the upwind flux, i.e. the first term on the
right hand side of Eq. (8), is treated implicitly for the merit of
diagonal dominance which is beneficial to the solution iteration.
The rest of the flux is implemented explicitly and updated after
each solution iteration.

3.2 Diffusion fluxes

The over-relaxed approach (Jasak 1996, Tsui and Pan 2006,
Basara 2004) is used to compute diffusion fluxes due to allow
for grid deformation and good numerical stability and accuracy.
Its application to approximate diffusion fluxes is governed by

F d
f = (A�ϕ)f

[
| ��|ϕG − ϕP

dPG
+ (∇ϕ)f · �kf

]
(9)

where �� = �rPG/(�rPG · �n) is parallel to �rPG, with �k = �n− �� and
dPG = distance between P and G. The gradient of variable ϕ at
the interface is obtained via interpolation from values of adjacent
cell central nodes with fP = |dIG|/|dPG| as

(∇ϕ)f = fP(∇ϕ)P + (1 − fP)(∇ϕ)G (10)

3.3 Variable gradients

The gradient of variableϕ at point P is approximated by the Gauss
theorem

(∇ϕ)P = 1

�

∫
S

ϕ�ndS = 1

�

∑
f

(Aϕ�n)f (11)

where S = surface of control cell.

3.4 Discretized momentum equation

By substituting Eqs. (8), (9) and (11) into Eq. (4), and intro-
ducing the under-relaxation coefficient αϕ to further strengthen
computational stability results in

aP
ϕP

αϕ
−

∑
f

anbϕnb = bP + aP
(1 − αϕ)ϕ

o
P

αϕ
(12)

where

aP =
∑

f

{anb + max(Ff , 0)},

anb = DfA(|Pf |)+ 2(1 − ωf )max(−Ff , 0),

Pf = Ff/Df , Ff = (A�u · �n)f ,
Df = | ��|f(A�ϕ)f/dPG,

bP =
∑

f

(A�ϕ)f(∇ϕ)f · �kf+
∫
�

Sϕd�−
∑

f

FHf ,

in which ϕO
P = value at present time step, ϕP = value at next time

step. The values of A(|P |), ωf and FHf are shown in Table 1.

3.5 Pressure-correction equation

The pressure correction equation is derived from the continuity
equation in standard pressure correction procedures (Pantankar
1980), and the interface velocity correction is calculated by
momentum interpolation methods (Rhie and Chow 1983) to
suppress pressure and velocity oscillations (e.g. Neyshabouri
et al. 2003, Wormleaton and Ewunetu 2006). The coefficient
αp for pressure is also applied. Thus, pressure and velocity are
corrected as

aPp
′
P −

∑
f

anbp
′
nb = bϕ

p = p∗ + αpp
′

�u = �u∗ + �u′ = �u∗ −
(∫

�

∇p′d�|P
)/

af

= �u∗ −
∑

f

Afp
′
f �n

(13)

where

aP =
∑

f

anb, anb = Af�| ��|/(afdPG),

bϕ = −
∑

f

F ∗
f −

∑
f

�Af∇p′
f · �kf/af ,

F ∗
f = (A�u∗ · �n)f , ∇p′

f = fP∇p′
P + (1 − fP)∇p′

G

Table 1 Values of A(|P |), ωf and FHf

Scheme A(|P |) ωf FHf

Q-QUICK 1 0.5 max(Ff , 0)(ϕf)
max
H

+ min(Ff , 0)(ϕf)
min
H

CDS 1 1

Ff∇ϕf · �rIJ + min(Ff , 0)ϕP
UDS 1 0.5
HDS max(0, 1 − 0.5|P |) 0.5
PDS max(0, (1 − 0.1|P |)5) 0.5
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Grid1 Grid 2 Grid 3 Grid 4

Figure 3 Four different unstructured grids

Figure 4 Comparisons of u and v components along vertical and horizontal centerlines under each scheme and unstructured grid for Grids 1 to 4
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p′ = pressure correction, p∗ = pressure at present time, �u∗ =
velocity solved from momentum equations using p∗, �u′ = veloc-
ity correction, 1/af = fP/aP + (1 − fP)/aG. In general, the
second term of bϕ can be omitted without an effect on the final
computational result. Herein, the under-relaxation coefficients
are fixed to 0.6 for momentum and 0.4 for pressure-correction
for all test cases.

4 Numerical scheme verification

4.1 90◦ 2D lid-driven cavity flow

A standard numerical benchmark of square lid-driven cavity flow
with Reynolds number of 1000 (Ghia et al. 1982) was selected
for the Q-QUICK scheme verification. A grid-dependence study
was performed with quadric-lateral grids. These grids include
four unstructured mesh numbers, namely 144, 409, 1631 and
4503. The computational grid 1 and grid 2 are intentionally
twisted randomly (Fig. 3). The mesh skew angle and the edge
ratio are introduced to show the angle between two adjacent
sides and the length ratio of the longest and shortest sides of
the unstructured grids, respectively. For grid 1, the maximum
and minimum mesh skew angles are 174◦ and 24◦, respectively,
and the worst edge ratio is 3.49. For grid 2, the maximum and
minimum mesh skew angles are 175◦ and 38◦, respectively, with
the worst edge ratio of 2.84. To present the numerical perfor-
mances of Q-QUICK, the schemes UDS/CDS/HDS/PDS were
also considered for a comprehensive comparison including the
velocity profiles, convergence speed of momentum equation and

Table 2 Statistic results of numerical performances

Grid type Scheme Iterative CPU time Residual of Convergent
number momentum equation state

Grid 1

UDS 1000 8.53 5.12E-10 +
CDS 1000 9.37 4.33E-03 –
HDS 1000 7.18 1.15E-09 +
PDS 1000 7.81 5.88E-10 +
Q-QUICK 739 5.56 1.00E-10 +

Grid 2

UDS 3000 76.43 1.64E-10 +
CDS 3000 87.20 4.91E-03 –
HDS 3000 71.16 5.49E-10 +
PDS 3000 74.11 2.83E-10 +
Q-QUICK 2220 57.42 1.00E-10 +

Grid 3

UDS 3368 382.20 1.00E-10 +
CDS 3421 419.50 1.00E-10 +
HDS 3199 343.72 1.00E-10 +
PDS 3295 367.02 1.00E-10 +
Q-QUICK 3141 366.56 1.00E-10 +

Grid 4

UDS 5000 2123.26 2.41E-09 +
CDS 5000 2151.89 2.06E-09 +
HDS 5000 2053.61 7.78E-10 +
PDS 5000 2100.80 1.03E-09 +
Q-QUICK 5000 2204.23 2.41E-09 +

Note: “+” convergence, “−” divergence.
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Figure 5 Convergence curves of u momentum equation under each
scheme and unstructured grid for Grid (a) 1, (b) 2, (c) 3, (d) 4

CPU time consumptions. The Generalized Minimum Residual
method (GMRES) (Saad and Schultz 1986) with the incomplete
LU precondition was used to accelerate the convergence of the
linear equation.

A comparison of computational velocity components u along
the vertical centerline and v along the horizontal centerline under
each scheme and each grid type are shown in Fig. 4. The accuracy
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Figure 6 Five different unstructured grids

of Q-QUICK compared with the benchmarks is highest among
the schemes considered. Q-QUICK fits well to the benchmarks,
even with a relative coarse grid. The convergence curves of the
u component are shown in Fig. 5 for each scheme and grid type.
The CPU time (Pentium 4 2.4G, 1G memory) consumed by each
scheme under each grid type is stated in Table 2. The consumption
of CPU time by Q-QUICK is observed to be similar as for the
other schemes if fixed iterative numbers are set.

Figure 7 Comparisons of velocities u and v along vertical and horizontal centerlines for Grid (a) 1, (b) 2, (c) 3, (d) 4, (e) 5

4.2 30◦ skew 2D lid-driven cavity flow

Next, 30◦ skew lid-driven cavity flow with Reynolds number of
1000 was considered. The present grid-dependence study was
carried using five different density grids on unstructured meshes.
The mesh numbers, from left to right, are 260, 553, 1245,
2243 and 4991 (Fig. 6). Similarly to Case 1, grid 1 and grid
2 were also intentionally twisted. The maximum and minimum
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Figure 7 (Continued)

Figure 8 Convergence curves of u for Grid (a) 1, (b) 2, (c) 3, (d) 4, (e) 5
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mesh skew angles are 172◦ and 30◦ for grid 1, and 170◦ and 30◦

for grid 2, respectively. The worst edge ratios are 3.26 for grid
1 and 3.19 for grid 2. The numerical benchmark of Demirdzic
et al. (1992) was adopted for comparing the schemes. The com-
putational velocity components u and v for each scheme and grid
type are shown in Fig. 7. Q-QUICK has an accuracy similar to
Case 1. The convergence curves of u are shown in Fig. 8. The
convergence speed of Q-QUICK ranks first though with a slow
speed at the start of the iterative stage. In addition, the CPU time
consumed by each scheme under each grid type is also listed in
Table 3. The similar regularities of CPU time consumption are
conformed while compared with Case 1.

4.3 Diverging channel

A diverging channel was selected to present the behavior of Q-
QUICK for relatively coarse and fine grids, using the numerical
benchmarks of Napolitano et al. (1985) for comparison. The
computational domain is shown in Fig. 9(a) and (b), with the
inlet at left, and the outlet at right. The upper boundary is a
symmetry line, while the lower boundary is a wall specified as

y = 5[tanh(2 − 30x)/R − tanh(2)] (14)

with R = 10, 0 < x < 3.5 and inlet velocities

u = 3(y − 0.5y2), v = 0 (15)

Table 3 Statistic results of numerical performances

Grid type Scheme Iterative CPU time Residual of Convergent
number momentum equation state

Grid 1

UDS 1058 14.94 1.00E-10 +
CDS 1500 21.54 1.57E-10 +
HDS 1208 15.50 1.00E-10 +
PDS 1173 16.91 1.00E-10 +
Q-QUICK 946 15.72 1.00E-10 +

Grid 2

UDS 1972 56.64 1.00E-10 +
CDS 2000 58.80 1.06E-10 +
HDS 2000 56.08 1.37E-10 +
PDS 2000 56.86 1.00E-10 +
Q-QUICK 1814 52.06 1.00E-10 +

Grid 3

UDS 2500 192.29 1.12E-09 +
CDS 2500 195.15 3.41E-10 +
HDS 2500 189.97 8.24E-10 +
PDS 2500 191.63 1.09E-10 +
Q-QUICK 2500 195.66 1.60E-10 +

Grid 4

UDS 3000 488.74 6.84E-10 +
CDS 3000 494.31 1.20E-09 +
HDS 3000 483.95 2.28E-09 +
PDS 3000 493.32 1.29E-09 +
Q-QUICK 3000 491.17 2.78E-10 +

Grid5

HDS 4000 1911.66 1.26E-08 +
PDS 4000 1910.73 1.21E-08 +
UDS 4000 1914.93 1.07E-08 +
CDS 4000 1914.41 1.13E-08 +
Q-QUICK 4000 1940.16 9.57E-09 +

Note: “+” convergence, “−” divergence.

The interior is filled with coarse and fine quadrangular grids.
Each grid type predicts wall vorticity fairly well if the Q-QUICK
scheme is employed (Fig. 9c). Almost identical vorticity contours
over the whole domain are shown in Fig. 9(d) and (e) for coarse
and fine grids, respectively. The good predictions for coarse grids
are mainly due to application of the high order scheme Q-QUICK.

This case was also considered using the triangular grids
of Davidson (1996). The coarse and fine grids are shown in
Fig. 10(a) and (b). Fig. 10(c) compares wall vorticity of the bench-
mark, the results of Davidson (1996) and Q-QUICK. Note that the
curves of Q-QUICK are slightly better fitted to the benchmarks
(Napolitano et al. 1985). The pressure contours of Q-QUICK
and from Davidson (1996) on coarse and fine grids are shown in
Fig. 10(d) to (g), respectively.

4.4 3D lid-driven cavity flow

Finally, 3D lid-driven cavity flow was chosen for verification,
using a unit cubic cavity divided by several parts (Fig. 11a). The
computation for R = 1000 was compared with previous numer-
ical solutions of Ku et al. (1987), Kato et al. (1990), Cortes and
Miller (1994), and Babu and Korpela (1994). A group of hybrid
grids composed of tetrahedrons, pyramids and hexahedrons is
shown in Fig. 11(b) to (d) for the grid-dependence study, and
total cells used from grid 1 to grid 3 were 13,042, 29,689 and
62,110, respectively. Correspondingly, the minimum mesh skew
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Figure 9 Diverging channel with quadrangular grid (a) coarse grid, (b) fine grid, (c) wall vorticity ωW , vorticity contours for (d) coarse grid and (e)
fine grid

Figure 10 Diverging channel with triangular grid (a) coarse grid, (b) fine grid, (c) wall vorticity ωW , pressure contours using Q-QUICK for (d) coarse
grid, (e) fine grid, pressure contours based on Davidson (1996) for (f) coarse grid (g) fine grid
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Figure 10 (Continued)

 (a)Unit cubic  (b)

(c) (d)

Figure 11 Computational domain for (a) and group of 3D hybrid unstructured grids for (b) Grid 1, (c) Grid 2, (d) Grid 3

Figure 12 Comparisons of u and v velocity components along vertical and horizontal centerlines for Grid (a) 1, (b) 2, (c) 3
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Figure 13 Convergence curves of u for Grid (a) 1, (b) 2, (c) 3

Table 4 Statistic results of numerical performances.

Grid type Scheme Iterative CPU time Residual of Convergent
number momentum equation state

Grid 1

UDS 1000 1689.4 6.28E-09 +
CDS 1000 1754.6 3.90E-03 –
HDS 1000 1756.0 1.21E-08 +
PDS 1000 1755.0 6.71E-09 +
Q-QUICK 1000 1540.0 3.76E-10 +

Grid 2

UDS 3000 12814.8 5.48E-09 +
CDS 3000 13045.2 1.15E-08 +
HDS 3000 13043.4 1.53E-08 +
PDS 3000 13100.4 7.81E-09 +
Q-QUICK 3000 11623.8 1.84E-09 +

Grid 3

UDS 3000 29427.6 5.46E-10 +
CDS 3000 30167.4 2.24E-09 +
HDS 3000 29574.0 1.56E-09 +
PDS 3000 29568.6 1.12E-09 +
Q-QUICK 3000 26599.8 1.00E-10 +

Note: “+” convergence, “−” divergence

angles are 21.8◦, 21.1◦ and 18.3◦. The maximum edge ratios of
the tetrahedron, pyramid and hexahedron are 3.3, 2.9 and 6.6,
respectively, in grid 1; 6.1, 2.4 and 3.2 in grid 2; and 5.4, 1.9
and 3.8 in grid 3. In Fig. 12, the computational velocity profiles
of the u component on the vertical centerline and the v compo-
nent on the horizontal centerline of plane y = 0.5 are shown.
The velocities under each numerical scheme and each grid type
are compared with other numerical solutions. The accuracy of
Q-QUICK is seen to be good. Moreover, Q-QUICK fits well to
the previous numerical solutions as the grid numbers increase.

The convergence curves of u under each scheme and grid type
are shown in Fig. 13. The momentum equation discretized by
Q-QUICK converges smoothly for all the three grid types. Addi-
tionally, the convergence speed of 3D unstructured grids using
Q-QUICK behaves best despite the low speed at the initial itera-
tive stage. Furthermore, the CPU time consumptions under each
scheme and each type of grid are also listed in Table 4. Com-
pared with the 2D situations, there are no apparent differences
in CPU time consumption while putting aside the magnitude of
time itself.



Journal of Hydraulic Research Vol. 47, No. 6 (2009) Verification of Q-QUICK scheme for convective flux 775

5 Conclusions

In this study, the numerical performance of the Q-QUICK scheme
is investigated in terms of numerical accuracy, convergence sta-
bility, CPU time consumption and solution sensitivity to high
grid deformation. Four cases were considered: 90◦ and 30◦ 2D
lid-driven cavity flow, diverging channel and 3D lid-driven cavity
flow to compare the numerical performances of the scheme Q-
QUICK with UDS/CDS/HDS/PDS based on unstructured grids.
The main conclusions are:

(1) The accuracy of Q-QUICK is higher as compared with
UDS/CDS/HDS/PDS in these test cases. Moreover, small
grid numbers are required for Q-QUICK to attain the accu-
racy requirements as compared with the other schemes.
Accordingly, it fits well into the benchmarks as the grid
number is increased.

(2) The numerical stability of Q-QUICK is good, even for
highly-distorted and -twisted grids. Similar CPU time con-
sumptions are required by Q-QUICK as compared with
UDS/CDS/HDS/PDS.

(3) The implementation of Q-QUICK yields good numerical per-
formances in the above test cases. It would be desirable
to extend it to much wider applications, such as turbulent
transport models or high Reynolds number flows.
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Notation

A = Area
dPG = Distance between points P and G

�n = Outward-pointing face area vector
p = Pressure
p∗ = Pressure at present time step
p′ = Pressure correction
R = Reynolds number

�rPU = Distance vector between points P to U
S = Surface of control cell
Sϕ = Source term
�u = Velocity

�u∗ = Velocity solved from momentum equations
using values of p∗

�u′ = Velocity correction
u, v = Velocity components

αp = Under-relaxation coefficient for pressure
αϕ = Under-relaxation coefficient for velocity
δ1 = Distance between points P and e
δ2 = Distance between points e and E
�ϕ = Diffusivity
ϕ = Typical representative variable
ϕP = Value at next time step
ϕO

P = Value at present time step
ψ1 = Distance between points W and P
ψ2 = Distance between points E and EE
� = Volume of control cell
ωW = Wall vorticity
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